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ABSTRACT

k
For control systems of the form x - X(x) + I Yi(x)ui, a strengthened

i-1

version of the classical Pontryagin Maximum Principle is proved. The

necessary condition for optimality given here is obtained using functional

analytic techniques and quite general high-order perturbations of the

reference control. As shown by an example, our test is particularly effective

when applied to bang-bang controls, a case where other high-order tests do not

provide additional information.
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SIGNIFICANCE AND EXPLANATION

The determination of optimal controls is the primary problem in control

theory. The most effective tool in this respect is Pontryagin's Maximum

j Principle, which provides necessary conditions for optimality, thus restrict-

ing the search to a small set of candidates among which the optimal control is

more easily found.

In cases where Pontryagin's test does not yield sufficient information,

more refined necessary conditions are known, for example Krener's High-order

Maximum Principle. The high-order test discussed in this paper states further

necessary conditions for optimality and can be particularly useful when

applied to bang-bang controls, a case often encountered in the applications,

where other high-order tests are generally Ineffective.

P/ t/

The responsibility for the wording and views expressed in this descriptive
sumary lies with MNC, and not with the author of this report.



A HIGH-ORDER TEST FOR OPTIMALITY OF BANG-BANG CONTROLS

*

Alberto Bressan

1. Introduction

Let U be a closed convex subset of the Banach space L1 ((o,TJ1,f) and

consider a continuously Frichet differentiable mapping * : U + Rn. Given

e U, in this paper we give a high-order sufficient condition for #(u) to

belong to the interior of the image #(U). Problems of this kind arise

frequently in control theory. Indeed, consider a control system of the form

x(t) - f(x(t)) + G(x(t))u(t)
(S)

x(O) - 0, u(t) e fi for a.e. t e [0,T] ,

where 0 is a compact convex subset of R and f, G are C' mappings

from In  into Rn and le x Re respectively. If T is small enough, then

(S) yields a C' map u : u + x(T,u) from the set U of admissible controls

into R. Here x(T,u) is the point reached at time T by the solution of

(S) corresponding to the control u. A classical problem is the following:

given an admissible control U, decide whether U is time optimal. This is

often equivalent to showing that x(TW) lies on the boundary of the

reachable set R(T).

A well known necessary condition for optimality is given by the

Pontryagin Maximum Principle (PMP) (2,81. Krener's high order maximum

principle (HMP) [61 provides further conditions, obtained from the study of

more general one parameter perturbations u of the control '. If the first

order variation at the terminal point of the trajectory

lim [x(T,u ) - x(TW)]/E (1.1)
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vanishes, a high order tangent vector can be generated, and additional

necessary conditions for extremality are found. This method yielded several

new results (3,4,5,6], especially concerning the problem of local stability.

In this case, the reference control is U(t) : 0 and lies in the interior of

- [-1,+1]. Hence there are several ways to locally perturb 16 and achieve

a cancellation in the first order variation (1.1). The WIP can be here

particularly effective. On the other hand, if i is bang-bang, W(t)

already lies on the boundary of 01, and only one-sided perturbations of U

are admissible. As a result, in general there is no way of generating high

order tangent vectors, as long as only the winstantaneouso control variations

considered in (5,6] are used. In order to develop a genuine high order test

for bang-bang controls, it is necessary to achieve the cancellation of the

first order variation (1.1) by perturbing ' simultaneously in the neighbor-

hoods of two or more distinct times. This leads us to consider more general

control variations.

In the following, the variable t always denotes time, while C, c are

used as variational parameters: u(,*) or u(,Wc, o ) will denote controls in

LI( [O,T1uj') depending continuously on the parameters t, c. In the abstract

setting considered in sections 2 and 3, the control u is regarded merely as

a point in a Banach space 2, and we use the shorter notation u(t) or

u(c,V) to indicate its dependence on one or two parameters.

Definition 1. A one-parameter admissible variational family of control

functions (AVF) for a control U on 10,T), generating a tangent vector

v a En , is a continuous map y : C * u(C,*) from a nondegenerate interval

(0.C] into L([O,T]JF) such that

u(O,.) - () , u(C,.) e U V C e [Olt , (1.2)

lie (x(T,u(t,.)) - x(T,'(o))/C - v . (1.3)

C+0
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We say that the VF Y has order h if there exist constants C 1 , C 2  for

which

0 < C1 ( - u(Fe) -I.11C1h I C2 ' V 4 e (oA1 . (1.4)

Notice that one can recover every high order tangent vector by means of the

first order derivative (1.3), via a suitable change of the parameter C. As

shown in [5], this method differs from Krener's only in computational ease.

The above class of AVF is at the same time simpler and more general than those

studied in [5,6], hence the corresponding family of tangent vectors can be

much larger. One would like to use all of these vectors to derive a stronger

-KP.

Assume that, given suitable variational families Yi for U1i-0,•. k),

the positive span of the corresponding tangent vectors vi is all of IF. To

conclude that x(T,u-) lies in the interior of the reachable set R(T), one

has to construct approximate convex combinations of the vi continuously

depending on the parameters. More precisely, the yi should be sumnable in

the sense of

Definition 2. Let F - YO* .. . kI be a finite collection of AVF for the

control WE generating the tangent vectors vO.... vk. Set

k
0k - {c - ... ck) c 0 0, 1c 1} . (1.5)

i-0

F is sunmable if there exist Z > 0 and a continuous map (c,e) * u(cF,*)

from Ak X -0,1] into Ls([0,T]I]F ) such that, for all c e k

u(c,o,') - U(.), u(c,,) eu V 4 e [0,Z] , (1.6)

k
lim [x(T,u(c,,')) - x(T,6(')))/- I c v

0 i-0

(1.7)

k
uniformly on A

-3-
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This crucial property holds for control variations of the special kind

considered in (5,61, but is not satisfied by an arbitrary collection of AVF

(see 15 for a counterexample). Our key result in that if all but one of the

ei e F have order 1, then F is sumable. This is first proven in an

abstract setting, then stated for the control system (S). We thus obtain a

strengthened version of the IMP which is particularly effective when applied

to bang-bang controls. Indeed, our single high order variation is allowed to

be quite arbitrary. An application of this technique is given in 15.

2. Notations, statement of the main results.

Consider a mapping # from a neighborhood of a closed subset U of a

Banach space 9 into 1P and denote by D+(u) its differential at u. We

say that # in C1 if the map u + D#(u) from E into the space of

continuous linear operators L(2,1?) is continuous. For the definition of

the operator norm on L(K,VP) and for the basic properties of differentials

our general reference is Di6udonne 1].

If Z e U, by an admissible variational family (VF) for 16, generating

a tangent vector v e Rn , we mean a continuous map Y : + * u(C) frot (0,11

into U such that

u(O) -E, u(M) e U ee (0,11 , (2.1)

lim [#(u(C)) - *()1/9 , v * (2.2)

If, for some 0 < C1  C2 < and all & e (0,11,

C1  E - lulM) -- deh  C C2  (2.3)

we say that y has order h. We write B(x,r) for the closed ball centered

at x with radius r. The Kuclidean norm on Rn and the operator norm on

the set of n x m matrices are both written as 1 while double bars are

-4-
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used for the norms g.3 in Banach spaces such as R or L(3, 1 ). Int A,

co A denote the interior, the boundary and the convex closure of a set

A. With these conventions we have

Theorem 1 - Let U be a closed convex subset of a Banach space E, and let

*be a C1 mapping from a neighborhood of Li into IF. Assume i~e u and

let y : u ( ) be AVP of '9 generating the tangent vectors vi

(i-O,...,k). If 0 e int co{v 0 ... vk } !' r and y ,..., k have order 1,

then #(u) e int #(U).

Prom this result, a sharper form of Pontryagin's maximum principle for

the system (S) can be derived. To fix the ideas, assume that f and G

are CI on B(O,r) c ri x , Gx will denote partial derivatives. Let

up{If(x)l, iG(x) l; x e (O,r)j < M I

sup{Iwl w e 0} < M2 , 0 < T < (M + M1 2-r

This guarantees that, for every control u e LI ([0,T]IS) taking values in

a, hu < 12T and there exists a unique solution t + x(t,u) of (S) defined

on (0,T], taking values inside B(O,r). Notice that the open ball

B - {u e L ilul < 2T) is a neighborhood of the set of admissible controls

U- {u e L (0,TR m ); u(t) e 0 a.e. in (0,T)}

We assume that 0 is closed, bounded and convex, thus the same holds for U.

The map C 0 * C ([o,TIt n0) that associates to each control u the

corresponding solution x(-,u) of (S) is continuously Fr~chet differentiable.

Indeed 1 is implicitly defined by the equation *(u) - T(u,*(u)), with

,(u,x)(t) - f(x(s))ds + o G(x(s))u(s)d . (2.4)

The map Y can be thought of as the composition T2 e V,, defined by

VI(u,x)(t) - (u(t),f(x(t)),G(x(t)))

T2 (u'y 1 'y 2 )(t) " JO Y1 (s)ds + Jo Y2 (s)u( s )ds

_ ; - - i -5-



I II

Clearly Y1 is C and T in bilinear. Hence I is C and the same
2

holds for *. because of the implicit function theorem ([1], pg. 275). An

application of Theorem 1 yields

Theorem 2 - Let W be an admissible control for the system (S) and assume

that x(t,-) e 3R(T). Then, for every tangent vector v0  generated by a

(possible high-order) admissible variational family for , there exists

and absolutely continuous nonzero n-vector valued function t X 1(t) on

[O,T] which satisfies

X(T) * v0 4 0 (2.5)

X(t) - -X(t)[f (x(tW)) + Gx(x(t, )7u(t)]

X(t)G(x(tu)Iu(t) - mx{x(t)G(x(tu))u; u e a} (2.7)

for almost every t in [0,T].

3. Proof of Theorem I

Assume that 0 e nt ovO,...,vk}- rrom the family {Vo,...,vk) choose

such that
n + 1 nontrivial tangent vectors vO, ••• ,vn

o e int co(v',...,Vn}. Notice that, if v0  is not one of the chosen vectors,

0 n

any other vector can play its distinguished role. For notational convenience,

assume that 0 e nt {vO , .. .,vn } . Relying on the fact that Y 1 ... Yn have

order 1 we now prove

Leina 1. The family of admissible variations F - (¥0'-,n } is suble.

Proof. Define the scalar function a by

a( ) - sup(Eu0 ( ) - 13/21 0 4 C 4 V} . (3.1)

Clearly a is a continuous, nondecreasing function with a(O) - 0. By (2.2),

for C > 0 small enough ve have

lu0 () - BI / v ) */) • (3.2)

Therefore there exists a > ) 0 such that

--

iI * I * ''



for all e 6maO. Define u(c,) 0on An x 10,T] by

u(C.A) - U 0(c0 t) + c (w/aU)u (a() -U0(c01

ii ±(3.4)

if 0 < C 4 u(c,0) -~

By (3.3), u(cC) in well defined and takes values inside UI, being a convex

combination of members of U. As 9 + 0, u (c,V) tends to IT and each term

inside the summation in (3.4) tends to zero uniformly v.r.t. c. Therefore

u depends continuously on the parameters cFt. To show (1.7) we write

- *(u (c,') - #Mi) *(u(c,9)) # *u(c 9))
6(-,)) 6u + 00(3.5)

An 0, the first term on the right hand side of (3.5) converges to

cov 0 . The second term can be written as

JD#(9*u(c,U + (1-6) u 0 (c 0 U) * MuCA) - u 0 (c 0 MdO

-JI[D#(cn) + )((c,9,9) n ci(1/G(C)[u±(*(C)) - uO(c 0 )]}d8 * 3.6)

The continuous Fr~chet differentiability of # implies that X(cE,B)

D#(Sou(c,C) + (1-8) u 0 (c 0 )) - D$(lU) is a continuous linear operator whose

norm tends to zero uniformly in c, t as C + 0. Observe that

(1/G(CU)Iu±(sWO) - u0(C0PI 4 (1/4(9)) Iui(0(9U) -11l +

(3.7)

(1/aMUu(c 0 V - BlU 4 k + IQ c0V-U

for som finite constants ki in,.n) because the ui have order I

and by (3.1). The limit as *0 of the last term in (3.5) is therefore

giV.

-7-
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n

li, D#(U) • (c/a(&)) (u (a(4))-) (3.8)
4+0 i-i i

By the definition (2.2) of tangent vector, one has

*(ui )-))U) -(i) D+(E)'(ui () - U) + o()
vt , -i - lie
± + 0 +o

(3.9)

- lie D l )(u (E) - 6).4
E -,,i

Indeed ui is a first order AVF, hence the term o(g), which is

infinitesimal of higher order w.r.t. ui(P) - III as & + 0, is also of

higher order w.r.t. 9. Comparing (3.9) with (3.8) one concludes that

iim (*(u(c,A) - *(U)]-
-+O

n n
c0v0 + I c ilim D#(U) (u i(ME)) - U]/a(E) I civ i

i-i E+0 i-0

uniformly in c.

Using the above lemma, the proof of Theorem 1 can now be completed by an

application of Brouwer's fixed point theorem. Let 6 - dist(0, 3co{v 0 ,...,V)

and choose C 0 ) 0 so small that

n
14(u(c,4 0 ) - #1a) - t 01 civil C0 "6/2 (3.10)

n ~nn

for all c e An . Consider the injective map a : A n  defined by

n
(c) - 0(M) + C0  civ "

i- I

For x e B(mu(), c06) define F(x) - *(u(a 1 (x),9 0)). By (3.10),

IF(x) - xl < C08/2. For each x0 e B(#(u), 0 8/2), an application of

Brouwer's theorem ([81 pg. 251) now implies the existence of some

x e B((), c 06) for which F(x) - x0 . Hence B((M), 0 8/2) c #(U) Q.Z.D.



4. Proof of Theorem 2.

Suppose that the conclusion is false. Then there exists an admissible

variational family y0  for U possibly high order, that generates a tangent

vector v0  such that, for every absolutely continuous X(.) satisfying (2.5)

and (2.6), one has

X(t).G(x(t,U))*U(t) < maxX(t).G(x(t,-)).u u e l) (4.1)

for t in a subset J c (0,T) having positive measure. For each vector

n 0 0 with nev 0 4 0, let X (e) be the unique solution of (2.6) for which

A (T) = r, and choose a control u e U such that

i (t)-G(x(t,U))-u (t) max{X n(t)*G(x(t,-u))u, u e n) (4.2)

for a.e. t e[O,T]. The continuity of X , G and x(.,t) and a selection

theorem (7] imply that such a measurable u exists. Define an AVF Y for

by setting
u(&,') = () + v1- ) (.), E . e t0,11 . (4.3)

Then, for every E, u(C) e U because U is convex, and Iu(4) - VI/-

lu - -I yt 0, showing that y has order one. Let HT : [0,T] . i be the

linear projection x + x(T). From the remarks made in §2 it follows that the

map + x(t,u(E)) is the composition of CI mappings, hence the tangent

vector generated by the AVF (4.3) exists and is given by

v = lim [x(T,u(E)) - x(T,B)]/t 1 TD*(u)'(u - ) -
T+0 T

(4.4)

j' M(T,s)-G(x(s,-u))(u (s) -ii(s))ds

where s + M(T,s) is the matrix fundamental solution of

z(t) - [f (x(ti6)) + G (x(t,f)).C(t)]z(t)x x

with M(T,T) -I, and where * is the input-output map defined above

(2.4). By (2.6) the inner product of n and v is

-9-
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nlov M T (T)M(Ts)eG(x(su)).(u (s) - u(s))ds =
101

(4.5)

jo (sl'Glxls'Ill*l (a) -C(s))ds > 0

because of (4.1). Hence, for every nontrivial vector n with nev 0 4 0,

there exists a first order tangent vector v for which ?iev > 0. The

positive span of the set of first order tangent vectors together with v0  is

thus the whole space 1P. Theorem 1 applied to the C1 map * - Ir.*i,

u * x(T,u) yields x(Tu) a nt R(T), a contradiction.

5. Zxamples.

The assumption on the order of the control variations in Theorem 1 is

essential. Indeed, two arbitrary second order AVF need not be summable, as

shown by

3xample 1. Define a time dependent system on by

(Xl(t), x2 (t), x 3 (t)) - (0 2 (t)x 3 (tlu 1 (t)'O2 Ctlx 3 (tu 2 (t)

0 1 Wu 3(t) )'(.1

(XI(0),x 2 (0),x 3 (O)) - (0,0,0)1

where t e (0,3], the smooth functions s1r 02 satisfy

i I(t) - 0, 0 2 (t) o 0 for t e [1,2]

S2(t) 2 0 for t e [0,11 u (2,31 ((5.2

J 1 ,(t)dt - 2 -(t)dt  1 j3 0,(t)dt I

0 1 1 ' 2 (t2dt

and the controls satisfy the constraints

0 4 uI(t) 4 1 (ilt,2), -< u3 (t) ( * (5.3)

The reachable set at time t - 3 is then

-10-
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R(3) - {(X1 ,x 2 ,x 3 )h xIx 2 ) 01 . (5.4)

Let '6 be the null control. Consider the two VF for Ts
(1) (1/2 ,0?/2 u(2)1 _/

u ( )lt)- ) (t)(t) - (0, )

constant on the time interval [0,31. Notice that for i - 1,2

lulM) -G12/t _ (j3 u(i))t)(Idt)2  18 (5.5)
u0

By setting h - 2, C 1 - C2 - 18 in (1.4) one checks that u( 1 ) and u(2 )

are both of second order. The endpoints of the corresponding trajectories are

(1) (2)
x(3,u() 1 (t,0,0), x(3,u M1) - (0,-t,O) . (5.6)

Hence u 11 ) and u(2 ) generate the tangent vectors

v I = (1,0,0), v2 - (0,-1,0) . (5.7)

Comparing (5.7) with (5.4), it is clear that these two VF cannot be

sutmable. In this example, the set of high order tangent vectors of the

special type considered in [6) is the cone r - ((0,0x3); x3 e Id. This is

of course convex and coincides here with the first order tangent cone. Notice

that the time dependency can be easily removed by adjoining a new variable

x0 = t.

We now illustrate a non trivial application of Theorem 2 to the study of

optimality of bang-bang controls.

Example 2. Consider the three dimensional autonomus system with scalar

control u(t) e [-1,1]:
2

(x1,x2 ,x3) - (u,x1, x2+kx /2)

(5.8)

(x (0),x2(0),x3(0)) - (0,0,0)

The adjoint equations for this system are

( 1 1 2 ,i3 - (-X 2 -kxX 3 , -X 30) . (5.9)

If Jlk < 1, then a theorem of Sussmann [9) yields the existence of a T > 0

such that every time optimal control u(9) on (0,T] is bang-bang with at

-11-
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most two switching@. If Iki > 1, the above result does not apply. Indeed,

for every T > 0, there exist bang-bang controls u that satisfy

Pontryagin's necessary conditions for optimality and have an arbitrarily large

number of switchings on [0,T]. In order to construct a regular feedback

synthesis for (5.8) it is important to rule out the optimality of these

controls. In this direction we prove

Proposition 1. Assume k > 1. Then every bang-bang control U assuming the

value +1 on a positive neighborhood of the origin is not optimal after its

third switching time.

Proof. Let U be a bang-bang control which is initially +1 and has at

least 3 switchings, and let 0 < t 1 < t 2 < t3 be its first three switching

times. Fix any T > t 3 , smaller then the fourth switching time if there is

any. We will prove that x(T,U) e met R(T). If the classical Pontryagin's

necessary conditions do not hold for % on [O,T], we are done. Otherwise,

let A(t) - (A (t1 2(t),A3(t) be a nontrivial adjoint variable satisfying

(2.6) and (2.7), given in this case by (5.9) and

r(t) - sgn X (t) a.e. on E0,T] (5.10)

respectively. Our first task is to compute X(T). Set to - 0, t4 - T. From

(5.9) it follows that the map t + X(t) is C on (0,T] and piecewise

analytic on [ti...,ti] (i1,...,4). In particular, we have

3t) - 3(0), A 2(t) - A 2(0) - tA3  (5.11)

A (t) - X3 (1 - k sgn AICt)) a.e. on [0,T] (5.12)

AI(ti) = 0 (i - 1,2,3) . (5.13)

Hence AI(t) is a polynomial of degree 2 in t on each subinterval

[tl-lrt i ] . If AI(t) - 0 for some t e (tlt 2 ), then we would have

A(t) 0, against the assumptions. Thus X(t) ' 0 for t1 < t < t2 . By

-12-



(5.13), A1 is not identically zero. Together with (5.12), this implies

A3 > 0. multiplying by a positive scalar, we can therefore assume

A3(t) = 1. This, together with (5.12) and (5.13), determines Al(t)

uniquely:

A1 (t) _ I (t-tl )t-t 2 ), for t e [t 11t2 ]  (5.14)
1 1 -k

A1 1t) - -_I k (t-t2)(t-t 3), for t 6 [t2,t33 . (5.15)

The computation of A (t ) using alternatively (5.9), (5.14) and (5.15)
112

yields

1(t2 22 - kxl(t2) =-A 2 (t2) -k(2tl-t 2) -

(5.16)
k + 1 (t2-t) - kI (t3-t2)

Notice that the above expressions coincide because A is C1. From (5.9),

(5.16) we deduce

A2 (T) - t 1 1 - 3k)/2 + t2 1 + k)/2 -T (5.17)

For notational convenience, set a - t1, b - t2-t1, C - t3-t2, d - T-t3.

So far, we have proven that, up to a positive scalar factor, there exists a

unique adjoint variable A(t) that satisfies (2.6) and (2.7) on [0,T]. In

particular, (5.17) and the last equality in (5.16) yield

k-i
X(T) - (AI(T), -ka + 2 b - c - d, 1) ( (5.18)

(k + 1)b - (k- 1)c ( (5.19)

The second part of the proof consists in the construction of a second

order AFV for 6 generating at t - T a tangent vector v having a positive

inner product with ACT). A lengthy but elementary computation (see Appendix)

shows that the control 6 steers the system from the origin to a point

x(Te) whose coordinates are

-13-



xI(TU) - a - b + c -d

22

X2 (TIT) T /2 - (b+c+d)2 + (c+d) 2 - I

(5.20)

i3 (TT) - IT3/2 - (b+€+d) $ + (c+d)3 - d3 ]/ +

[a3 + (b-a) 3 + (c-b+a)3 + (d-c+b-a)3/21k/3

For t 6 [0,T] and C > 0 suitably small define

uMW)lt) - I if t 6 mo,a+ c) u [a+b+t12 (b+c), T-d+ b)

u(t)(t) - -1 if t e [a+2 ca+b+t (b+c)) u .-d4/dT)

The coordinates of x(T,u(C)) are thus obtained from (5.20), replacing

a~~~b~~c~1/ bya~,b~2b c, d-C"2b respectively. Using (5.19), one

checks that in the expression of x(T,u(M)) all terms in C/2 cancel, hence

the map C + u(M) is an &VF of 1 of order 2. The computation of the

corresponding tangent vector v defined by (1.3) yields (see Appendix)

v - (0, 2, b + c + 2d + k(2a - b + c))bc (5.21)

The inner product of (5.18) and (5.21) is

.(T).v - (k - 1)bc 2 > 0

This shows that the necessary conditions for extremality given in Theorem 2 do

not hold for V, hence x(T,u) e nt R(T). For any T > t 3 , 6 is not time

optimal after T, therefore V is not optimal after its third switching

time.
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APIPENDIX

For the control V~ considered in Example 2, the coordinates of the

point x(T,WF) are

x(,)- Tu(s)ds - a-b+c-d

20

x2 (T,'W) - T(T-s)u(s)ds - T 2/2 -(b+c~d) 2+ (c+d) 2 d2

(T,') _jT T-2 u(s)ds + k jT (x1(s,WT)) 2do

[10 kja *24 + ja+bC_ (2as) b+ ja~~(..b.a 2 +TS jTda2b.c.s20 ab a 2~ ~ ~

3 3 3 3

+ ! _&!+ aa . 2(-+) + (&-~_&3
2 3 3 3

The coordinates of x(T,u(V)) are:

x I(T,u(9)) x TV

- 22 - bo4)- 1/2 )2 + cd( ) 12 )2

x (Tu(U~) T ~ /2 - (b+c+d - 0 Y) + (c+d -(b+c) ' )

* ~ (db x2b~~b/ )3,T + (dcb 3 2

3/2 2 21/2
x (T,uC) [T (bbccbc -~ cC/3 +(~ -(~

3N 3



+ (Jc2+b 24:*2cd] + k[2abc-b2 ~ 2 *~cI (

x- TW + bc[b+c+2d4k(2a-b+c)]C

because, by (5.19), b+c+k(b-c) -0. This yields (5.21).
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